homotopy approximation of modules

نویسندگان

m. routaray

nit rourkela a. behera

nit rourkela

چکیده

deleanu, frei, and hilton have developed the notion of generalized adams completion in a categorical context. in this paper, we have obtained the postnikov-like approximation of a module, with the help of a suitable set of morphisms.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Homotopy approximation of modules

Deleanu, Frei, and Hilton have developed the notion of generalized Adams completion in a categorical context. In this paper, we have obtained the Postnikov-like approximation of a module, with the help of a suitable set of morphisms.

متن کامل

dedekind modules and dimension of modules

در این پایان نامه، در ابتدا برای مدول ها روی دامنه های پروفر شرایط معادل به دست آورده ایم و خواصی از ددکیند مدول ها روی دامنه های پروفر مشخص کرده ایم. در ادامه برای ددکیند مدول های با تولید متناهی روی حلقه های به طور صحیح بسته شرایط معادل به دست آورده ایم و ددکیند مدول های ضربی را مشخص کرده ایم. گزاره هایی در مورد بعد ددکیند مدول ها بیان کرده ایم. در پایان، قضایای lying over و going down را برا...

15 صفحه اول

On Relative Homotopy Groups of Modules

In his book “Homotopy Theory and Duality,” Peter Hilton described the concepts of relative homotopy theory in module theory. We study in this paper the possibility of parallel concepts of fibration and cofibration in module theory, analogous to the existing theorems in algebraic topology. First, we discover that one can study relative homotopy groups, of modules, from a viewpoint which is close...

متن کامل

The Homotopy Theory of Projective Modules

Serre [8; 9] has established the rudiments of a dictionary for translating the language of projective modules into that of vector bundles. With this point of departure we have attempted to adapt some of the results and methods of homotopy theory to certain purely arithmetic and even noncommutative settings. Detailed proofs of our results will appear elsewhere. The authors are very grateful to A...

متن کامل

Crossed Modules as Homotopy Normal Maps

In this note we consider crossed modules of groups (N → G, G→ Aut(N)), as a homotopy version of the inclusion N ⊂ G of a normal subgroup. Our main observation is a characterization of the underlying map N → G of a crossed module, in terms of a simplicial group structure on the associated bar construction. This approach allows for “natural” generalizations to other monoidal categories, in partic...

متن کامل

The homotopy categories of injective modules of derived discrete algebras

We study the homotopy category K(InjA) of all injective A-modules InjA and derived category D(ModA) of the category ModA of all A-modules, where A is finite dimensional algebra over an algebraically closed field. We are interested in the algebra with discrete derived category (derived discrete algebra. For a derived discrete algebra A, we get more concrete properties of K(InjA) and D(ModA). The...

متن کامل

منابع من

با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید


عنوان ژورنال:
journal of algebra and related topics

جلد ۴، شماره ۱، صفحات ۱۳-۲۰

میزبانی شده توسط پلتفرم ابری doprax.com

copyright © 2015-2023